Đáp án A.
Phương pháp
Cho hai điểm A x 1 ; y 1 ; z 1 ; B x 2 ; y 2 ; z 2 thì
A B → = x 2 − x 1 ; y 2 − y 1 ; z 2 − z 1
Cách giải
Áp dụng công thức ta có:
A B → = 1 − − 1 ; − 1 − 0 ; 2 − 1 = 2 ; − 1 ; 1
Đáp án A.
Phương pháp
Cho hai điểm A x 1 ; y 1 ; z 1 ; B x 2 ; y 2 ; z 2 thì
A B → = x 2 − x 1 ; y 2 − y 1 ; z 2 − z 1
Cách giải
Áp dụng công thức ta có:
A B → = 1 − − 1 ; − 1 − 0 ; 2 − 1 = 2 ; − 1 ; 1
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian Oxyz, cho tam giác ABC trong đó A(1; 0; -2), B(2; 1; -1), C(1; -2; 2). Tìm tọa độ trọng tâm G của tam giác ABC
A. G ( - 4 3 ; - 1 3 ; - 1 3 )
B. G ( 4 3 ; 1 3 ; - 1 3 )
C. G ( 4 3 ; - 1 3 ; - 1 3 )
D. G ( 4 3 ; - 1 3 ; 1 3 )
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng P : 2 x - y - 2 z - 2 = 0 . (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a ; b ; 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
A. a - b = - 1
B. a + b = - 2
C. a - b = 1
D. a + b = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): 2x-y-2z-2=0. (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a , b , 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0; 1; 1); B(2; 5; -1). Phương trình mặt phẳng (P) qua A, B và song song với trục hoành là
A. (P): y+2z-3=0
B. (P): y+3z+2=0
C. (P): x+y-z-2=0
D. (P): y+z-2=0
Trong không gian với hệ trục tọa độ Oxyz cho A (1; 2; ‒1), B (‒2; 1; 0). Điểm M a ; b ; c thuộc mặt phẳng P : x - 2 y + z + 4 = 0 sao cho M A = M B = 11 2 . Khi đó giá trị của a bằng?
A. a = ± 1 2
B. a = 11 4
C. a = 1 2
D. a = - 1 2
Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(0;-2;-1), B(1;-2;2) và mặt phẳng (P): x+2y+2z+1=0, A B ∩ ( P ) = N Khi đó AN/BN bằng
A. 3 2
B. 5 2
C. 1 2
D. 3 5
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + 3 y - 2 z + 2 = 0 và đường thẳng d : x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B, C a ; b ; c sao cho C là trung điểm của AB. Tổng a + b + c bằng
A. -15
B. -12
C. -5
D. 11
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y - 4 z = 0 , đường thẳng d : x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A(1;3;1) thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vecto chỉ phương của đường thẳng ∆ . Tính b+c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4
Trong không gian Oxyz với hệ tọa độ Oxyz, cho ba điểm A(2;-1;1), B(1;0;4) và C(0;-2;-1). Phương trình mặt phẳng qua A và vuông góc với đường thẳng BC là
A. 2 x + y + 2 z - 5 = 0
B. x + 2 y + 5 z + 5 = 0
C. x - 2 y + 3 z - 7 = 0
D. x + 2 y + 5 z - 5 = 0