Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): -3x+2z-1=0 . Vectơ nào sau đây là 1 vecto pháp tuyến của mặt phẳng (P)
A. (3;2;-1)
B. (-3;2;-1)
C. (-3;0;2)
D. (3;0;2)
Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong hệ trục tọa độ Oxyz cho mặt phẳng (P) có phương trình 3x - z + 1 = 0. Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): x-2y+3=0. Vecto pháp tuyến của (P) là
A. (1;-2;3)
B. (1;-2;0)
C. (1;-2)
D. (1;3)
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): 2x+4y-3z+1=0. Vecto pháp tuyến của (P) là:
A. (2;4;3)
B. (2;4;-3)
C. (2;-4;-3)
D. (-3;4;2)
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2z -1 = 0 và 2x - z + 3 = 0. Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2y - 5z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) 2x+y-1=0. Mặt phẳng (P) có 1 vecto pháp tuyến là
A. (-2;-2;1)
B. (2;1;-1)
C. (1;2;0)
D. (2;1;0)
Trong không gian Oxyz, cho mặt phẳng có phương trình x-z-1=0. Một vecto pháp tuyến của (P) có tọa độ là
A. (1;1;-2)
B. (1;-1;0)
C. (1;0;-1)
D. (1;-1;-1)
Trong không gian với hệ tọa độ Oxyz, cho M(2;-1;1) và vecto n → = ( 1 ; 3 ; 4 ) Viết phương trình mặt phẳng (P) đi qua điểm M và có vecto pháp tuyến n →
A. 2x - y + z + 3 = 0
B. 2x - y + z - 3 = 0
C. x + 3y + 4z + 3 = 0
D. x + 3y + 4z - 3 = 0