Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): 2x+4y-3z+1=0. Vecto pháp tuyến của (P) là:
A. (2;4;3)
B. (2;4;-3)
C. (2;-4;-3)
D. (-3;4;2)
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): -3x+2z-1=0 . Vectơ nào sau đây là 1 vecto pháp tuyến của mặt phẳng (P)
A. (3;2;-1)
B. (-3;2;-1)
C. (-3;0;2)
D. (3;0;2)
Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Vecto pháp tuyến của mặt phẳng (P)
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B((-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là:
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng α : x-2y+3z+1=0
A. (3;-2;1)
B. (1;-2;3)
C. (1;2;-3)
D. (1;-2;-3)
Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong hệ trục tọa độ Oxyz cho mặt phẳng (P) có phương trình 3x - z + 1 = 0. Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng đi qua điểm A 1 ; − 2 ; 0 và vec tơ pháp tuyến n → = 2 ; − 1 ; 3 là
A. x − 2 y − 4 = 0
B. 2 x − y + 3 z − 4 = 0
C. 2 x − y + 3 z = 0
D. 2 x − y + 3 z + 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+2y-3z+1=0. Vecto nào dưới đây là 1 vecto pháp tuyến mặt phẳng (P)
A. (2;2;1)
B. (2;-3;1)
C. (2;2;-3)
D. (2;-2;-3)