Lời giải:
Ta thấy \(2^{4n+2}-2=2(2^{4n}-1)=2(16^n-1)\)
$16\equiv 1\pmod 5\Rightarrow 16^n\equiv 1\pmod 5$
$\Rightarrow 16^n-1\equiv 0\pmod 5$
$\Rightarrow 16^n-1\vdots 5$
$\Rightarrow 2(16^n-1)\vdots 10$
Vậy đáp án b.
Lời giải:
Ta thấy \(2^{4n+2}-2=2(2^{4n}-1)=2(16^n-1)\)
$16\equiv 1\pmod 5\Rightarrow 16^n\equiv 1\pmod 5$
$\Rightarrow 16^n-1\equiv 0\pmod 5$
$\Rightarrow 16^n-1\vdots 5$
$\Rightarrow 2(16^n-1)\vdots 10$
Vậy đáp án b.
1) Tìm n thuộc Z sao cho:
a)n^2-1 chia hết cho n+2
b)n-1 chia hết cho n^2+2
c)3n-8 chia hết cho n-4
2) a) Chứng minh: A(n)=n(n+1)(n+2) chia hết cho 6
b) A(n)=n(n+1)(2n+1) chia hết cho 6
c) Tích 2 số chẵn liên tiếp chia hết cho 8
d) Tích 4 số nguyên liên tiếp chia heeta cho 24
3) Với giá trị nào của n thì (n+5)(n+6) chia hết cho 6n
trong các số sau đây, số nào chia hết cho 2,5,10? (nêu cách làm)
a, 34n+1 (n thuộc N)
b, 24n+1_2(n thuộc N)
c, 94n_6(n thuộc N , n > hoặc =1 )
d , 22n+4(n thuộc N , n> hoặc =2)
Tìm n thuộc N để:
a,3n+2 chia hết cho n-1
b, n2+ 2n+7 chia hết cho n+2
c, n2+1 chia hết cho n-1
d,n+8 chia hết cho n+3
e, n+6 chia hết cho n-1
g, 4n-5 chia hết cho 2n-1
CÁC BẠN GIẢI ĐƯỢC PHẦN NÀO THÌ GIẢI . MONG CÓ NHIỀU BẠN GIÚP ĐỠ MÌNH
Chứng minh rằng
a) (85+47-164) chia hết cho 16
b) (1+22+24+26+.....+22014) chia hết cho 15
c) (3n+2 - 2n+2+3n-2n) chia hết cho 10 (n thuộc N)
d) (3n+3+3n+1+2n+3+2n+2) chia hết cho 6 (n thuộc N)
e) n(n-1)(n+1)(n2+1) chia hết cho 5 (với mọi Z)
các bạn nhớ giải giúp mình rõ ràng ngắn gọn, bạn nào làm được, mình rất biết ơn đấy
Cho n số nhận các giá trị:0,1,2,...,9
a)Tìm dư của n trong phép chia n cho 5.
b)Tìm dư của n^2 trong phép chia n^2 cho 5.
c)Áp dụng chứng minh:A=n(n^2+1)(n^2+4)chia hết cho 5 (n thuộc N)
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
tìm n thuộc N để :
a)3n+2 chia hết cho n-1
b)\(n^2\)+ 2n + 7 chia hết cho n+2
c)\(n^2\)+1 chia hết cho n-1
d)n+8 chia hết cho n+3
e)n+6 chia hết cho n-1
g)4n-5 chia hết cho 2n-1
giúp mình nha mình sẽ tick cho các bạn mình hứa đấy
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
bài 1: cm
a,n^3+11n chia hết cho 6 vs nEN
b,n^3+17n chia hết cho 6 vs nEN
c,n^3+3n^2-n-3 chia hết cho 48 vs n là số lẻ
d,n^4-4n^3-4n^2+16n chia hết cho 384 vs là số chẵn lớn hơn 4