\(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{13\cdot15}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{15}=\dfrac{2}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}=\dfrac{5}{15}-\dfrac{1}{15}=\dfrac{4}{15}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\)
= \(\dfrac{1}{3}-\dfrac{1}{13}\)
=\(\dfrac{10}{26}=\dfrac{5}{13}\)
=1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +.....+1/13 - 1/15
=(1/3-1/15)+(1/5-1/5)+(1/7-1/7)+...+(1/13-1/13)
=1/3-1/15+0+0+0+...+0
=5/15-1/15
=4/15