1: \(142-\left[50-\left(2^3\cdot5-2^3\cdot10\right)\right]\)
\(=142-\left[50-2^3\left(5-10\right)\right]\)
\(=142-\left[50-8\cdot\left(-5\right)\right]\)
\(=142-\left[50+40\right]\)
=142-90
=52
2: \(\left[-18+3\right]\cdot\left(-4\right)+\left(-72\right)\)
\(=\left(-15\right)\cdot\left(-4\right)+\left(-72\right)\)
\(=60-72=-12\)
3: \(25-\left[49-\left(2^2\cdot14-2^2\cdot17\right)\right]\)
\(=25-\left[49-2^2\left(14-17\right)\right]\)
\(=25-\left[49-4\cdot\left(-3\right)\right]\)
\(=25-\left[49+12\right]\)
=25-61
=-36