tính (x-y)/(2021+x^2)+(y-z)/2021^2+(x)/2021-y^2 biết xy+yz+zx=2021
Cho các số thực x,y,z thỏa mãn xyz=2021
Chứng minh rằng \(\frac{1}{xy+x+1}+\frac{2021}{yz+2021y+2021}+\frac{2021}{zx+z+2021}=1\)
Cho x,y,z khác 0 thỏa mãn x+yz=2022 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2022\)
CMR: \(\dfrac{1}{x^{2021}}+\dfrac{1}{y^{2021}}+\dfrac{1}{z^{2021}}=\dfrac{1}{x^{2021}+y^{2021}+z^{2021}}\)
Tính tổng:
R=\(\dfrac{x}{xy+x+2021}\)+\(\dfrac{y}{yz+y+1}\)+\(\dfrac{2021z}{xz+2021z+2021}\)
Cho các số x,y,z thỏa mãn: x+y+z+xy+yz+xz=3033
Chứng minh rằng: a^2+y^2 +c^2>2021
Cho x,y,z t/m:x+y+z=6 và (x-1)3+(y-2)3+(z-3)3=0 .tính P=(x-1)2021+(y-2)2021+(z-3)2021
cho x,y,z khác 0 thoả mãn x+y+z=2022 và 1/x+1/y+1/z=1/2022 CMR: 1/x^2021+1/y^2021+1/z^2021=1/x^2021+y^2021+z^2021
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
cho x,y,z thỏa mãn : x+y+z=1/2 ; 1/y^2+1/z^2+1/xyz=4 ; 1/x+1/y+1/z>0. tính Q = (x^2019+z^2019)+(y^2017+z^2017)(x^2021+y^2021)