CÓ `A = 1 +2^2 + 2^4 +... + 2^100`
`=> 2^2A = 2^2 + 2^4 + ... + 2^102`
`=> 4A - A = (2^2 + 2^4 + ... + 2^102) - (1 + 2^2 + 2^4 + ... + 2^100)`
`=> 3A = 2^102 - 1`
`=> A = (2^102 - 1)/3 `
Vậy `A = (2^102 - 1)/3`
Đúng 7
Bình luận (1)
\(A=1+2^2+2^4+2^6+...+2^{98}+2^{100}\)
\(4A=2^2+2^4+2^6+2^8+...+2^{100}+2^{102}\)
\(4A-A=2^2+2^4+2^6+2^8+...+2^{100}+2^{102}-1-2^2-2^4-2^6-...-2^{100}\)
\(3A=2^{102}-1\)
\(A=\dfrac{2^{102}-1}{3}\)
Vậy...
Đúng 3
Bình luận (1)
\(A=1+2^2+2^4+...+2^{100}\)
=>\(4A=2^2+2^4+...+2^{102}\)
=>\(4A-A=2^2+2^4+...+2^{102}-1-2^2-...-2^{100}\)
=>\(3A=2^{102}-1\)
=>\(A=\dfrac{2^{102}-1}{3}\)
Đúng 4
Bình luận (1)