tính thuận tiện:
\(\dfrac{4}{5}+\dfrac{2}{3}+\dfrac{1}{5}+\dfrac{1}{3}\) \(\dfrac{17}{12}+\dfrac{29}{7}-\dfrac{8}{7}+\dfrac{7}{12}\) \(\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{2}{5}-\dfrac{1}{7}-\dfrac{2}{14}\)
\(\dfrac{2}{5}+\dfrac{6}{9}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
mik sẽ chỉ tick 3 bn xong trước phải chi tiết rõ ràng
a: =4/5+1/5+2/3+1/3=1+1=2
b: =17/12+7/12+29/7-8/7=3+2=5
c: =3/5+2/5+16/7-1/7-1/7
=1+2=3
d: =2/5+3/5+2/3+1/3+7/4+1/4
=1+1+2
=4
\(\dfrac{4}{5}+\dfrac{2}{3}+\dfrac{1}{5}+\dfrac{1}{3}\)
\(=\left(\dfrac{4}{5}+\dfrac{1}{5}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{5}{5}+\dfrac{3}{3}\)
\(=1+1\)
\(=2\)
============
\(\dfrac{17}{12}+\dfrac{29}{7}-\dfrac{8}{7}+\dfrac{7}{12}\)
\(=\left(\dfrac{17}{12}+\dfrac{7}{12}\right)+\left(\dfrac{29}{7}-\dfrac{8}{7}\right)\)
\(=\dfrac{24}{12}+\dfrac{21}{7}\)
\(=2+3\)
\(=5\)
====================
\(\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{2}{5}-\dfrac{1}{7}-\dfrac{2}{14}\)
\(=\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{6}{15}-\dfrac{1}{7}-\dfrac{1}{7}\)
\(=\left(\dfrac{9}{15}+\dfrac{6}{15}\right)+\left(\dfrac{16}{7}-\dfrac{1}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{15}{15}+\dfrac{14}{7}\)
\(=1+2\)
\(=3\)
===============
\(\dfrac{2}{5}+\dfrac{6}{9}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\dfrac{2}{5}+\dfrac{2}{3}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\left(\dfrac{2}{5}+\dfrac{3}{5}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{7}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{5}{5}+\dfrac{3}{3}+\dfrac{8}{4}\)
\(=1+1+2\)
\(=4\)