Bài 1: Cho cấp số nhân có: u3 = 18 và u6 = -486.
Tìm số hạng đầu tiên và công bội q của cấp số nhân đó
Bài 2: Tìm u và q của cấp số nhân (un) biết:
Bài 3: Tìm cấp số nhân (un) biết cấp số đó có 4 số hạng có tổng bằng 360 và số hạng cuối gấp 9 lần số hạng thứ hai.
1) tìm số hạng đầu và công sai của một cấp số cộng biết \(\left\{{}\begin{matrix}u_3=-3\\u_9=29\end{matrix}\right.\)
2) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-5\) và d = 3. Tính \(S_{20}\)
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Cho cấp số cộng ( u n ) với số hạng đầu u 1 = - 6 và công sai d = 4. Tính tổng S của 14 số hạng đầu tiên của cấp số cộng đó
A.S = 46
B. S = 308
C. S = 644
D. S = 280
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n , ( n ∈ ℕ * ) . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 ; d = 10 .
B. u 1 = - 8 ; d = - 10 .
C. u 1 = 8 ; d = 10 .
D. u 1 = 8 ; d = - 10 .
Cho cấp số cộng (un)thoả u2=3 và u10=-15 Tính số hạng đầu u1, công sai d và tổng 20 số hạng đầu tiên của cấp số cộng (un)
Cho cấp số cộng có công sai d = 1 và u22 – 2u32 – u42 đạt giá trị lớn nhất. Tính tổng S20 của 20 số hạng đầu tiên của cấp số cộng đó.
A.120
B. 125
C.130
D.135