\(\left\{{}\begin{matrix}u_1+d=3\\u_1+9d=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=\dfrac{21}{4}\\d=-\dfrac{9}{4}\end{matrix}\right.\)
\(S_{20}=\dfrac{21}{4}.20+\dfrac{19.20}{2}.\left(-\dfrac{9}{4}\right)=-\dfrac{645}{2}\)
\(\left\{{}\begin{matrix}u_1+d=3\\u_1+9d=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=\dfrac{21}{4}\\d=-\dfrac{9}{4}\end{matrix}\right.\)
\(S_{20}=\dfrac{21}{4}.20+\dfrac{19.20}{2}.\left(-\dfrac{9}{4}\right)=-\dfrac{645}{2}\)
Cho cấp số cộng ( u n ) với số hạng đầu u 1 = - 6 và công sai d = 4. Tính tổng S của 14 số hạng đầu tiên của cấp số cộng đó
A.S = 46
B. S = 308
C. S = 644
D. S = 280
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Cho cấp số cộng ( u n ) biết u 5 = 18 và 4 S n = S 2 n . Tìm số hạng đầu tiên u 1 và công sai d của cấp số cộng
A. u 1 = 3 ; d = 2
B. u 1 = 2 ; d = 3
C. u 1 = 2 ; d = 2
D. u 1 = 2 ; d = 4
Cho cấp số cộng u n có u 1 + 2 u 5 = 0 và S 4 = 14 . Tính số hạng đầu u 1 và công sai d của cấp số cộng.
A. u 1 = 8 ; d = 3
B. u 1 = - 8 ; d = 3
C. u 1 = - 8 ; d = - 3
D. u 1 = 8 ; d = - 3
Cho cấp số cộng u n có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n – n ^ 2. Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng. Khi đó:
A. M = -1
B. M = 1
C. M = 4
D. M = 7
Cho cấp số cộng u n với số hạng đầu tiên u 1 = 2 và công sai d = 2 . Tìm u 2018
A. 2 2018
B. 2 2017
C. 4036
D. 4038
Cho cấp số cộng (un) có công sai d = -3 và u22 + u32 + u42 đạt giá trị nhỏ nhất. Tính tổng S100 của số hạng đầu tiên của cấp số cộng đó.
A. S100 = -14650.
B. S100 = -14400.
C. S100 = -14250.
D. S100 = -15450.
Cho cấp số cộng ( u n ) có số hạng đầu u 1 = 3 và công sai d = 2 . Tính u 5
A. 11
B. 15
C. 12
D. 14