Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Cho cấp số cộng u n có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n – n ^ 2. Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng. Khi đó:
A. M = -1
B. M = 1
C. M = 4
D. M = 7
Cho cấp số cộng ( u n ) với số hạng đầu u 1 = - 6 và công sai d = 4. Tính tổng S của 14 số hạng đầu tiên của cấp số cộng đó
A.S = 46
B. S = 308
C. S = 644
D. S = 280
Cho cấp số cộng ( u n ) biết u 5 = 18 và 4 S n = S 2 n . Tìm số hạng đầu tiên u 1 và công sai d của cấp số cộng
A. u 1 = 3 ; d = 2
B. u 1 = 2 ; d = 3
C. u 1 = 2 ; d = 2
D. u 1 = 2 ; d = 4
Cho cấp số cộng u n biết u 5 = 18 v à 4 S n = S 2 n . Tìm số hạng đầu tiên u 1 và công sai d của cấp số cộng
A. u 1 = 2 ; d = 4
B. u 1 = 2 ; d = 3
C. u 1 = 2 ; d = 2
D. u 1 = 3 ; d = 2
Cho cấp số cộng (un)thoả u2=3 và u10=-15 Tính số hạng đầu u1, công sai d và tổng 20 số hạng đầu tiên của cấp số cộng (un)
1) cho dãy số có các số hạng đầu là 8; 15;22; 29; 36;.. số hạng tổng quát của dãy số là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2;d=9\). Khi đó số 2018 là số hạng thứ mấy của dãy
3) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=5;q=2\). Số hạng thứ 6 của cấp số nhân là
4) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2;u_2=6\).Công bội của cấp số nhân bằng
1) tìm số hạng đầu và công sai của một cấp số cộng biết \(\left\{{}\begin{matrix}u_3=-3\\u_9=29\end{matrix}\right.\)
2) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-5\) và d = 3. Tính \(S_{20}\)