\(2P=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(2P=1+\frac{1}{2}+...+\frac{1}{2^{98}}\)
\(2P-P=\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(P=1-\frac{1}{2^{99}}\)
\(P=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2P=2.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(2P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99-1}}\)
\(2P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(P=2P-P=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(P=1-\frac{1}{2^{99}}\)
\(P=\frac{2^{99}-1}{2^{99}}\)