Đặt biểu thức trên là A
Ta có:
\(2A-A=A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)=1-\frac{1}{32}=\frac{31}{32}\)
=\(\frac{1}{1}\)-\(\frac{1}{32}\)
=\(\frac{31}{32}\)ủng hộ mk nha!!!
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=\)
\(\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)-\left(\frac{1}{16}-\frac{1}{32}\right)=\)
\(\frac{1}{1}-\frac{1}{32}=\frac{31}{32}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{32}\)
\(\Rightarrow2A-A=1-\frac{1}{32}\)
\(\Rightarrow A=\frac{31}{32}\)
Đặt tổng trên = A
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(A=1-\frac{1}{32}\)
\(A=\frac{31}{32}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(A\cdot2=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\cdot2\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(A\cdot2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(A=1-\frac{1}{32}\)
\(A=\frac{31}{32}\)
\(\text{Đặt tổng trên = A}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(A=1-\frac{1}{32}=\frac{31}{32}\)