a: \(2+4+6+...+98+100\)
Số số hạng là; \(\dfrac{100-2}{2}+1=\dfrac{98}{2}+1=50\left(số\right)\)
Tổng của dãy số là: \(\left(100+2\right)\cdot\dfrac{50}{2}=51\cdot50=2550\)
b: Sửa đề: \(100-96+92-88+84-80+...+12-8+4\)
Trong dãy số 8;12;...;96;100 sẽ có:
\(\dfrac{100-8}{4}+1=\dfrac{92}{4}+1=24\left(số\right)\)
mà ta lại có 100-96=92-88=...=12-8=4
nên sẽ có 24 cặp số có tổng là 4 trong dãy số này
\(100-96+92-88+...+12-8+4\)
\(=\left(100-96\right)+\left(92-88\right)+\left(84-80\right)+...+\left(12-8\right)+4\)
\(=4+4+...+4\)
\(=4\cdot24+4=100\)
c: Đặt A=\(150-100+149-97+148-94+...+118-4\)
\(=\left(150+149+...+118\right)-\left(100+97+94+...+4\right)\)
Số số hạng trong dãy từ 118 đến 150 là:
(150-118):1+1=150-118+1=32+1=33(số)
Tổng của dãy số 118;119;...;150 là:
\(\left(150+118\right)\cdot\dfrac{33}{2}=4422\)
Số số hạng trong dãy 4;7;...;97;100 là:
\(\dfrac{100-4}{3}+1=\dfrac{96}{3}+1=33\left(số\right)\)
Tổng của dãy số 4;7;...;97;100 là:
\(\left(100+4\right)\cdot\dfrac{33}{2}=52\cdot33=1716\)
=>A=4422+1716=6138
e: \(31+33+35+...+113+115\)
Số số hạng là \(\dfrac{115-31}{2}+1=43\left(số\right)\)
Tổng của dãy số là: \(\left(115+31\right)\cdot\dfrac{43}{2}=3139\)
f: Đặt \(B=111-98+113-96+...+207-2\)
\(=\left(111+113+...+207\right)-\left(2+4+...+96+98\right)\)
Số số hạng trong dãy 111;113;...;207 là:
\(\dfrac{207-111}{2}+1=49\left(số\right)\)
=>Tổng của dãy này là: \(\left(207+111\right)\cdot\dfrac{49}{2}=7791\)
Số số hạng trong dãy 2;4;...;98 là:
\(\dfrac{98-2}{2}+1=\dfrac{96}{2}+1=49\left(số\right)\)
=>tổng của dãy này là: \(\left(98+2\right)\cdot\dfrac{49}{2}=49\cdot50=2450\)
=>B=7791-2450=5341