\(\int\dfrac{\sin x}{9-\cos^2x}dx=\int\dfrac{\sin x}{(3- \cos x)(3+\cos x)}dx\)
\(=-\int\dfrac{1}{(3- \cos x)(3+\cos x)}d(\cos x)\)
\(=\dfrac{-1}{6}.\int[\dfrac{1}{(3- \cos x)}+\dfrac{1}{(3+ \cos x)}]d(\cos x)\)
\(=\dfrac{1}{6}.\int\dfrac{d(3-\cos x)}{(3- \cos x)}-\dfrac{1}{6}.\int\dfrac{d(3+\cos x)}{(3+ \cos x)}\)
\(=\dfrac{1}{6}.\ln\dfrac{3-\cos x}{3+\cos x}\)