Định m để hàm số xác định với mọi x dương: a) y = √x - m - 1 + √4x - m.
1.Cho \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\).Tính Q khi \(x=13-4\sqrt{10}\)
2. Cho hàm số y=x-2m-1 với m là tham số
a, xác định m để đồ thị hàm số đi qua gốc tọa độ O
b, tính theo m tọa độ các giao điểm A,B của đồ thị hàm số với các trục Ox,Oy. H là hình chiếu của O trên AB. Xác định giá trị của m để \(OH=\frac{\sqrt{2}}{2}\)
c, tìm quỹ tích trung điểm I của AB
Định a để hàm số xác định với mọi x>0
\(y=\sqrt{x-a}+\sqrt{2x-a-1}\)
Bài 1: Tìm m để các hàm số sau là hàm số bậc nhất
a) y= ( m - 2 )x - \(\dfrac{2}{3}\) b) y= ( 4 - 2022m )x - 2 c) y= \(\sqrt{1-2m}\)x + m - 3
Bài 2: Cho đồ thị hàm số y= -2x + 3
a) Xác định hệ số a,b
b) Các điểm A( -2 ; 7) ; B(\(\sqrt{2}\) ; 6)
c) Tìm tọa độ điểm M thuộc ( d ) có tung độ = 11
d) Tìm tọa độ điểm C thuộc ( d ), biết rằng hoành độ của điểm C gấp 3 tung độ của nó
e) Tìm tọa độ điểm E thuộc ( d ), biết rằng tung độ của điểm E và hoành độ là 2 số đối nhau
Tìm m để các pt sau đúng với mọi x thuộc R
\(x+\sqrt{2x^2+1}\) lớn hơn hoặc bằng m
\(m^4-4x+m\)lớn hơn hoặc bằng 0
Tìm giá trị của tham số m để:
Hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định trên (-1;3)
Cho hàm số : \(y=\sqrt{2m-5}\left(x-2\right)\) .
Xác định m để đồ thị của hàm số trên là một đường thẳng. Gọi (d) là đường thẳng \(y=\sqrt{2x-5}\left(x-2\right)\) .
a, Xác định m để đường thẳng (d) vuông góc với đường thẳng y = -2x + 5
b, Xác định m để đường thẳng (d) song song với đường thẳng y = x + 4
c, Xác định m để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng -4.
Định a để hàm số xác định với mọi x>0
\(y=\frac{x-a}{x+a-1}+\sqrt{2x-3a+4}\)
Cho hàm số y=(m+1)x-1
a/ xác định m để hàm số đã cho đi qua trung điểm (1; 0)
b/ xác định m để hàm số đã cho song song với đường thẳng y=x+3