\(F=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(F=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(F=2\times\frac{502}{1005}\)
\(F=\frac{1004}{1005}\)
F=4/2.4+4/4.6+4/6.8+..........+4/2008.2010
F=2/2-2/4+2/4-2/6+2/6-2/8+......+2/2008-2/2010
F=2/2- 2/4+2/4-2/6+2/6-2/8+......+2/2008-2/2010
F=2/2-2/2010
=>F=2008/2010=1004/1005
\(\text{Ta có : }\) \(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{1004.1005}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{1004}-\frac{1}{1005}\)
\(=1-\frac{1}{1005}\)
\(=\frac{1004}{1005}\)