\(x^2-3x+6=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{15}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{2}\)
Đặt A=x2-3x+6
A=x(x-3)+6
Ta có: x(x-3)≥0 với x∈Q
nên x(x-3)+6≥6 với x∈Q hay A≥6
Dấu = xảy ra khi x=0;x=3
⇒
\(x^2-3x+6\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)