Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
肖一战(Nick phụ)

Tính giá trị của đa thức P=x3+x2y-2x2-xy-y2+3y+x+2017 với x+y=2

Giúp với,mình đang cần gấp lắm ạ!

 

Bài làm

Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

          P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017

          P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019

          P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019

Mà x + y = 2 => x + y - 2 = 0

Thay x + y - 2 = 0 và đa thức P, ta được:

P = x. 0 - y . 0 + 0 + 2019

P = 0 - 0 + 0 + 2019

P = 2019

Vậy P = 2019 tại x + y = 2

# Học tốt #

Khách vãng lai đã xóa
ctk_new
30 tháng 10 2019 lúc 20:20

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(P=\left(x^3+x^2y-2x^2\right)+\left(-xy-y^2+2y\right)+\left(x+y-2\right)+2019\)

\(P=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(P=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(P=0+2019=2019\)

Khách vãng lai đã xóa
Bùi Anh Tuấn
30 tháng 10 2019 lúc 20:24

Ta có

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(\Leftrightarrow x^3+x^2y-2x^2-xy-y^2+2y+y+x+2017\)

\(\Leftrightarrow\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+2019\)

\(\Leftrightarrow x^2\cdot\left(x+y-2\right)-y\cdot\left(x+y-2\right)+\left(x+y-2\right)+2019\)

Ta có \(x+y=2\Rightarrow x+y-2=0\)

\(\Rightarrow P=2019\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đỗ Đức Hà
Xem chi tiết
Chu Thành An
Xem chi tiết
Chung Tran
Xem chi tiết
Nguyễn Hữu Việt
Xem chi tiết
Nguyễn Thị Hiền Nga
Xem chi tiết
Ngô Văn Chiến
Xem chi tiết
Nguyễn Thị Hiền Nga
Xem chi tiết
Nguyễn Hữu Việt
Xem chi tiết
Trần Nguyễn Bảo Trân
Xem chi tiết