\(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-...-\dfrac{1}{5^{99}}+\dfrac{1}{5^{100}}\)
\(=-\dfrac{1}{5}\left(1-\dfrac{1}{5}\right)-\dfrac{1}{5^3}\left(1-\dfrac{1}{5}\right)-...-\dfrac{1}{5^{99}}\left(1-\dfrac{1}{5}\right)\)
\(=\left(1-\dfrac{1}{5}\right)\left(-\dfrac{1}{5}-\dfrac{1}{5^3}-...-\dfrac{1}{5^{99}}\right)\)
\(=\left(\dfrac{1}{5}-1\right)\left(\dfrac{1}{5}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\right)\)
Mặt khác:
\(F=\dfrac{1}{5}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)
\(25F=5+\dfrac{1}{5}+...+\dfrac{1}{5^{97}}\)
\(25F-F=5-\dfrac{1}{5^{99}}\)
\(F=\dfrac{5-\dfrac{1}{5^{99}}}{24}\)
\(\Rightarrow A=\left(\dfrac{1}{5}-1\right).F\)
\(=\dfrac{-4}{5}.\dfrac{5-\dfrac{1}{5^{99}}}{24}=\dfrac{\dfrac{1}{5^{99}}-5}{5.6}=\dfrac{\dfrac{1}{5^{100}}-1}{6}\)