Giải:
a) \(B=3x\left(x+2\right)-x\left(x+1\right)\)
Tại x = -1, ta được:
\(B=3\left(-1\right)\left(-1+2\right)-\left(-1\right)\left(-1+1\right)\)
\(\Leftrightarrow B=-3-0=-3\)
b) \(C=7x\left(x-5\right)+3\left(x-2\right)\)
Tại x = 0, ta được:
\(C=7.0\left(0-5\right)+3\left(0-2\right)\)
\(\Leftrightarrow C=0+\left(-6\right)=-6\)
c) \(D=-2x\left(x+1\right)+4\left(x+2\right)\)
Tại x = -1, ta được:
\(D=-2\left(-1\right)\left(-1+1\right)+4\left(-1+2\right)\)
\(\Leftrightarrow D=0+4=4\)
d) \(E=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
Tại x = -2, ta được:
\(E=-2\left(-2-5\right)-2\left(-2\right)\left(-2+1\right)+\left(-2\right)^2\)
\(\Leftrightarrow E=14-4+4=14\)
e) \(F=x\left(7x+2\right)-5x\left(x+3\right)\)
Tại x = 1, ta được:
\(F=1\left(7.1+2\right)-5.1\left(1+3\right)\)
\(F=9-20=-11\)
Vậy ...
\(B=3x\left(x+2\right)-x\left(x+1\right)\)
\(B=3x^2+6x-x^2-x\)
\(B=2x^2+5x\)
\(B=x\left(2x+5\right)\)
Tại x = -1 ta có :
\(B=\left(-1\right)\left[2.\left(-1\right)+5\right]=\left(-1\right).3=-3\)
\(C=7x\left(x-5\right)+3\left(x-2\right)\)
\(C=7x^2-35x+3x-6\)
\(C=7x^2-32x-6\)
Tại x=0 ta có :
\(C=7.0-32.0+6=6\)
\(D=-2x\left(x+1\right)+4\left(x+2\right)\)
\(D=-2x^2-2x+4x+8\)
\(D=-2x^2+2x+8\)
\(D=-2\left(x^2-x-4\right)\)
Tại x = -1 ta có :
\(D=-2.\left[\left(-1\right)^2-\left(-1\right)-4\right]=4\)
\(E=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
\(E=x^2-5x-2x^2-2x+x^2\)
\(E=-7x\)
Tại x = -2 ta có :
\(E=-7\left(-2\right)=14\)
\(F=x\left(7x+2\right)-5x\left(x+3\right)\)
\(F=7x^2+2x-5x^2-15x\)
\(F=2x^2-13x=x\left(2x-13\right)\)
Tại x= 1 ta có :
\(F=1.\left(2.1-13\right)=-11\)