+) \(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2019\cdot2020}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2019}-\frac{1}{2010}\)
\(M=1-\frac{1}{2010}=\frac{2009}{2010}\)
Vậy M=\(\frac{2009}{2010}\)
+) Đặt A=\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{50}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\frac{49}{50}\)
\(A=\frac{1\cdot2\cdot\cdot\cdot\cdot49}{2\cdot3\cdot\cdot\cdot\cdot50}=\frac{1}{50}\)