Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài làm tại link này nhé!
Giải
Ta có : \(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)
Vì \(b>a>0\) nên loại trường hợp a = 2b
\(\Leftrightarrow2a=b\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)
Vậy \(A=-3\)
Ta có : 2a^2+2b^2=5ab2a2+2b2=5ab
\Leftrightarrow2a^2-5ab+2b^2=0⇔2a2−5ab+2b2=0
\Leftrightarrow2a^2-4ab-ab+2b^2=0⇔2a2−4ab−ab+2b2=0
\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0⇔2a(a−2b)−b(a−2b)=0
\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0⇔(2a−b)(a−2b)=0
\(\Leftrightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)
Vì b>a>0b>a>0 nên loại trường hợp a = 2b
\Leftrightarrow2a=b⇔2a=b
\Leftrightarrow\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3⇔a−ba+b=a−2aa+2a=−a3a=−3
Vậy A=-3A=−3