\(E=1+4+4^2+4^3+...+4^{98}+4^{99}\)
\(\Rightarrow4E=4+4^2+4^3+...+4^{99}+4^{100}\)
\(\Rightarrow4E-E=\left(4+4^2+4^3+...+4^{99}+4^{100}\right)-\left(1+4+4^2+4^3+...+4^{98}+4^{99}\right)\)
\(\Rightarrow3E=\left(4-4\right)+\left(4^2-4^2\right)+\left(4^3+4^3\right)+...+\left(4^{99}-4^{99}\right)+\left(4^{100}-1\right)\)
\(\Rightarrow3E=4^{100}-1\)
\(\Rightarrow E=\dfrac{4^{100}-1}{3}\)
4E=4+4^2+...+4^100
=>3E=4^100-1
=>E=(4^100-1)/3