Hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết AC=2a 2 và A C B ⏜ = 45 0 . Diện tích toàn phần S t p của hình trụ (T) là:
Cho hình vuông ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD quanh MN thành một hình trụ. Gọi (S) là mặt cầu có diện tích bằng diện tích toàn phần của hình trụ, tính có bán kính của mặt cầu (S)?
Trong không gian cho hình chữ nhật ABCD có AB=1, AD=2. Gọi M, N lần lượt là trung điểm AD và BC. Quay hình chữ nhật đó xung quanh trục MN ta được một hình trụ. Tính diện tích toàn phần của hình trụ đó?
Trong không gian, cho hình chữ nhật ABCD có A B = 1 v à A D = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần S t p của hình trụ đó.
A. S t p = 6 π
B. S t p = 2 π
C. S t p = 4 π
D. S t p = 10 π
Trong không gian, cho hình chữ nhật ABCD có AB=1 và AD=2. Gọi M,N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Tính diện tích toàn phần Stp của hình trụ đó.
Cho hình chữ nhật ABCD có AB=2a, BC=3a. Gọi M, N là các điểm trên các cạnh AD, BC sao cho MA=2MD, NB=2NC. Khi quay quanh AB, các đường gấp khúc AMNB, ADCB sinh ra các hình trụ có diện tích toàn phần lần lượt là S 1 , S 2 .Tính tỉ số S 1 S 2
Cho hình chữ nhật ABCD có AB=2a, BC=3a. Gọi E, F lần lượt là các điểm trên các cạnh AD, BC sao cho EA=2ED, FB=2FC. Khi quay quanh AB các đường gấp khúc AEFB, ADCB sinh ra hình trụ có diện tích toàn phần lần lượt là S 1 , S 2 . Tính tỉ số S 1 S 2 .
Cho hình chữ nhật ABCD có AB=a,
BC=2a. Gọi M,N lần lượt là trung điểm
của AB và CD. Thể tích của khối trụ tạo
thành khi quay hình chữ nhật ABCD
quanh trục MN bằng
Cho hình chữ nhật ABCD có cạnh AB = 4 3 , AD = 1. Lấy điểm M trên CD sao cho MD = 3 . Cho hình vẽ quay quanh AB, tam giác MAB tạo thành vật tròn xoay gồm 2 hình nón chung đáy. Tính diện tích toàn phần của vật tròn xoay này.