Cho hình chữ nhật ABCD có AB=2a, BC=3a. Gọi M, N là các điểm trên các cạnh AD, BC sao cho MA=2MD, NB=2NC. Khi quay quanh AB, các đường gấp khúc AMNB, ADCB sinh ra các hình trụ có diện tích toàn phần lần lượt là S 1 , S 2 .Tính tỉ số S 1 S 2
Trong không gian cho hình chữ nhật ABCD có AB=1, AD=2. Gọi M, N lần lượt là trung điểm AD và BC. Quay hình chữ nhật đó xung quanh trục MN ta được một hình trụ. Tính diện tích toàn phần của hình trụ đó?
Trong không gian cho hình chữ nhật ABCD có AB=4, BC=2. Gọi P, Q lần lượt là các điểm trên cạnh AB và CD sao cho BP=1, QD=3QC. Quay hình chữ nhật APQD xung quanh trục PQ ta được một hình trụ. Diện tích xung quanh của hình trụ đó bằng
Cho hình vuông ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD quanh MN thành một hình trụ. Gọi (S) là mặt cầu có diện tích bằng diện tích toàn phần của hình trụ, tính có bán kính của mặt cầu (S)?
Trong không gian, cho hình chữ nhật ABCD có A B = 1 v à A D = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần S t p của hình trụ đó.
A. S t p = 6 π
B. S t p = 2 π
C. S t p = 4 π
D. S t p = 10 π
Trong không gian, cho hình chữ nhật ABCD có AB=1 và AD=2. Gọi M,N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Tính diện tích toàn phần Stp của hình trụ đó.
Cho hình chữ nhật ABCD có AB = 2AD. Lần lượt quay hình chữ nhật quanh các trục AB, AD ta được hai khối trụ lần lượt gọi là (H1), (H2). Tính tỉ số thể tích của khối trụ (H1) chia cho thể tích của khối trụ (H2)
A. 1
B. 1/4
C. 1/2
D. 2
Cho hình chữ nhật ABCD có AC = 2AD = 2a. Quay quanh trục AB đường gấp khúc ADCB ta được hình trụ có diện tích xung quanh là:
A. 6π a 2
B. 3π a 2
C. 2π a 2 3
D. π a 2 6
Cho hình chữ nhật ABCD có AB=a,
BC=2a. Gọi M,N lần lượt là trung điểm
của AB và CD. Thể tích của khối trụ tạo
thành khi quay hình chữ nhật ABCD
quanh trục MN bằng