Phương pháp:
Tìm tập hợp các điểm biểu diễn số phức bài cho sau đó tính diện tích hình phẳng được giới hạn bởi các điểm đó.
Cách giải:
Phương pháp:
Tìm tập hợp các điểm biểu diễn số phức bài cho sau đó tính diện tích hình phẳng được giới hạn bởi các điểm đó.
Cách giải:
Cho số phức z = m - 2 + ( m 2 - 1 ) i , với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z nằm trên đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 1 3
B. 8 3
C. 4 3
D. 2 3
Cho số phức z = m + 3 + ( m 2 - 1 ) i , với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z thuộc đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 4 3
B. 8 3
C. 2 3
D. 1 3
Tập hợp tất cả các điểm biểu diễn số phức z thoả mãn z 2 + z + z ¯ = 0 là một đường tròn, diện tích giới hạn bởi đường tròn đó bằng
A. 4 π
B. 2 π
C. 3 π
D. π
Trong mặt phẳng phức Oxy, các số phức z thỏa mãn z + 2 i - 1 = z + i Mô dul của số phức z được biểu diễn bởi điểm M sao cho MA ngắn nhất với A (1;3) là
A. 10
B. 7
C. 2 3
D. 2 5
Trong mặt phẳng phức Oxy, các số phức z thỏa mãn z + 2 i − 1 = z + i . Mô dun của số phức z được biểu diễn bởi điểm M sao cho MA ngắn nhất với A(1;3) là
A. 10
B. 7
C. 2 3
D. 2 5
Cho số phức z thỏa mãn điều kiện z + 4 + z - 4 = 10 Tập hợp điểm biểu diễn số phức z trong mặt phẳng tọa độ Oxy là một hình phẳng có diện tích bằng
A. 20 π
B. 15 π
C. 12 π
D. 16 π
Diện tích hình phẳng giới hạn bởi các đường y = x + sin 2 x , y = x , x = 0 , x = π là
A. π 2
B. π 2 − 1
C. π − 1
D. π
Diện tích hình phẳng giới hạn bởi các đường y = x + sin 2 x , y = x , x = 0 , x = π là:
A. π 2
B. π 2 - 1
C. π - 1
D. π
Cho số phức z thỏa mãn điều kiện 3 ≤ z − 3 i + 1 ≤ 5. Tập hợp các điểm biểu diễn của Z tạo thành một hình phẳng. Tính diện tích S của hình phẳng đó.
A. S = 25 π .
B. S = 8 π .
C. S = 4 π .
D. S = 16 π .