Cho số phức z = m - 2 + ( m 2 - 1 ) i , với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z nằm trên đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 1 3
B. 8 3
C. 4 3
D. 2 3
Cho số thực a thay đổi và số phức z thỏa mãn z a 2 + 1 = i - a 1 - a a - 2 i . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z . Khoảng cách giữa hai điểm M và I (-3; 4) (khi a thay đổi) là:
A. 4
B. 3
C. 5
D. 6
Cho số phức z thay đổi thỏa mãn z - 3 - 4 i ≤ 2 . Đặt w=(z-2)(2-2i)+1, tập hợp tất cả các điểm biểu diễn số phức w là một hình tròn có diện tích bằng
A. 8 π
B. 12 π
C. 16 π
D. 32 π
Tính diện tích hình phẳng giới hạn bởi các điểm biểu diễn các số phức thỏa mãn z + 2 − i + z − 4 − i = 10
A. 12 π
B. 20 π
C. 15 π
D. Đáp án khác
Cho số phức z thỏa mãn: z = m 2 + 2 m + 5 , với m là tham số thực thuộc ℝ . Biết rằng tập hợp các điểm biểu diễn các số phức w = 3 - 4 i z - 2 i là một đường tròn. Tính bán kính r nhỏ nhất của đường tròn đó.
A. r = 20
B. r = 4
C. r = 22
D. r = 5
Cho số phức z thỏa mãn: z = m 2 + 2 m + 5 , với m là tham số thực thuộc ℝ . Biết rằng tập hợp các điểm biểu diễn các số phức w = 3 - 4 i z - 2 i là một đường tròn. Tính bán kính r nhỏ nhất của đường tròn đó.
A. r = 20
B. r = 4
C. r = 22
D. r = 5
Cho số phức z= a+bi (a,b∈R). Biết tập hợp các điểm A biểu diễn hình học số phức z là đường tròn (C) có tâm I(4;3) và bán kính R=3. Đặt M là giá trị lớn nhất, m là giá trị nhỏ nhất của F=4a+3b-1. Tính giá trị M+ m.
A. M+ m=63
B. M+ m=48
C. M+ m=50
D. M+ m=41
Cho số phức z = a + b i a , b ∈ ℤ . Biết tập hợp các điểm A biểu diễn hình học số phức z là đường tròn C có tâm I 4 ; 3 và bán kính R = 3. Đặt M là giá trị lớn nhất, m là giá trị nhỏ nhất của F = 4 a + 3 b − 1 . Tính giá trị M + m .
A. M + m = 63
B. M + m = 48
C. M + m = 50
D. M + m = 41
Cho số phức z thỏa mãn điều kiện z − 3 + 4 i ≤ 2 . Trong mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức w = 2 z + 1 − i là hình tròn có diện tích
A. 9 π
B. 12 π
C. 16 π
D. 25 π