\(B=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{5n+1}+\frac{1}{5n+6}\)
\(B=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-...+\frac{1}{5n+1}-\frac{1}{5n+6}\)
\(B=\frac{1}{1}-\frac{1}{5n+6}=\frac{5n+5}{5n+6}\)
\(B=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{5n+1}+\frac{1}{5n+6}\)
\(B=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-...+\frac{1}{5n+1}-\frac{1}{5n+6}\)
\(B=\frac{1}{1}-\frac{1}{5n+6}=\frac{5n+5}{5n+6}\)
1. Tính tổng
a, A=1/2.3 + 1/3.4 + ... + 1/99.100
b, B= 5/1.4 + 5/4.7 + ... + 5/100.103
c, C= 1/15 +1/35 + ... + 1/2499
d, D=1/1.6 + 1/6.11 + 1/11.16 + ... +1/(5n+1).(5n+6)
mn ơi mình đang cần gấp
Chứng minh 1/1.6+1/6.11+1/11.16+...+1/(5n+1)(5n+6)=n+1/5n+6
chứng minh rằng với mọi n thuộc Z ta luôn \(\frac{1}{1.6}\)+ \(\frac{1}{6.11}\)+\(\frac{1}{11.16}\)+........+\(\frac{1}{\left(5n+1\right).\left(5n+6\right)}\)=\(\frac{n+1}{5n+6}\)
giúp mình đi sớm nhé
C = 1/1.6+1/6.11+1/11.16+.....+1/(5n+1).(5n+6) n thuoc N
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
Tính:
\(D=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5n+1\right).\left(5n+6\right)}\)
Tính đầy đủ hộ mik vs. Mik đag cần gấp
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
chứng tỏ rằng với mọi n thuộc N ta luôn có
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)