Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho hàm số y = f(x), y = g(x) là các hàm số có đạo hàm và liên tục trên [0; 2] và ∫ 0 2 g x f ' x d x = 2 , ∫ 0 2 g ' x f x d x = 3 . Tính tích phân I = ∫ 0 2 [ g x f x ] ' d x .
A. I = –1
. I = 1
C. I = 5
D. I = 6
Tính diện tích hình phẳng giới hạn bởi các đường sau:
a) y = 2x – x 2 , x + y = 2 ;
b) y = x 3 – 12x, y = x 2
c) x + y = 1, x + y = -1, x – y = 1, x – y = -1;
d)
e) y = x 3 – 1 và tiếp tuyến với y = x 3 – 1 tại điểm (-1; -2).
Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Tính các tích phân sau: ∫ - 3 2 d x x + 7 + 3 (đặt t = x + 7 hoặc t = x + 7 + 3)
Tính các tích phân sau: ∫ - 4 6 x + 3 - x - 4 d x
Cho hàm số y = f ( x ) = 3 x 2 k h i 0 ≤ x ≤ 1 4 - x k h i 1 ≤ x ≤ 2 Tính tích phân ∫ 0 2 f ( x ) d x
A. 7/2
B. 1
C. 5/2
D. 3/2
Cho hàm số y = f ( x ) = x 2 k h i 0 ≤ x ≤ 1 2 - x k h i 1 ≤ x ≤ 2
Tính tích phân I= ∫ 0 2 f ( x ) d x
Tính các tích phân sau: ∫ - 2 4 x - 2 x + 3 2 d x (đặt t = x + 3)