`a)a^6+b^6`
`=a^6+2a^3b^3+b^6-2a^2b^3`
`=(a^3+b^3)^2-2(ab)^3`
`=[(a+b)(a^2-ab+b^2)])^2-2.(-36)^3`
`={10[(a+b)^2-3ab]}^2-2.(-46656)`
`=100.[10^2-3.(-36)]^2+93312`
`=100.(100+108)^2+93312`
`=100.43264+93312`
`=4326300+93312`
`=4419712`
Để khẳng định đáp án `441972` là đúng ta thử lại như sau:
`a+b=10=>b=10-a`
`a.b=-36`
`=>a(10-a)=-36`
`<=>10a-a^2=-36`
`<=>a^2-10a-36=0`
`<=>a^2-10a+25-61=0`
`<=>(a-5)^2-61=0`
`<=>(a-5)^2=61`
`<=>` \(\left[ \begin{array}{l}a=5-\sqrt{61}\\a=5+\sqrt{61}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}b=5+\sqrt{61}\\b=5-\sqrt{61}\end{array} \right.\)
`=>a^6+b^6=(5-sqrt{61})^2+(5+\sqrt{61})^2=4419712`(đoạn này bạn có thể bấm máy tính để check lại)