\(A=2^{2014}-2^{2013}-2^{2012}-......-2^2-2-1\)
\(\Rightarrow\left(-2\right)\times A=-2^{2015}+2^{2014}+2^{2013}+.....+2^3+2^2+2\)
\(\Rightarrow-2A+A=-A=-2^{2015}-1=-\left(2^{2015}+1\right)\)
\(\Rightarrow A=2^{2015}+1\)
\(A=2^{2014}-2^{2013}-2^{2012}-......-2^2-2-1\)
\(\Rightarrow\left(-2\right)\times A=-2^{2015}+2^{2014}+2^{2013}+.....+2^3+2^2+2\)
\(\Rightarrow-2A+A=-A=-2^{2015}-1=-\left(2^{2015}+1\right)\)
\(\Rightarrow A=2^{2015}+1\)
Tính A=2^2014-2^2013-2^2012-...-2^2-2-1
(1/2012+1/2013-1/2014)/(5/2012+5/2013-5/2014)-(2/2103+2/2014-2/2015)/(3/2013+3/2014-3/2015)
Thực hiện tính :
a) A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+..+2013)
b) B = 1-3/7.3+2-4/2.4+3-5/3.5+4-6/4.6+....+2011-2013/2011.2013+2012-2014/2012.2014-2013+2014/2013.2014
Cho S = 1- 2+ 2 ^2- 2^3 +..+ 2^2012 - 2^2013 . Tính 3*S-2^2014
Tính
A = 1 + 2 - 3 - 4 + 5 + 6 - ... - 2012 + 2013 + 2014
Tính
a) A = 1 + 2 - 3 - 4 + 5 + 6 -...-2012 + 2013 + 2014
Cho A= \(\frac{4+\frac{4}{2012}-\frac{4}{2013}+\frac{4}{2014}-\frac{4}{2015}}{\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}+7}\)
Và B= \(\frac{1+2+2^2+...+2^{2013}}{2^{2015}-2}\)
Tính A - B
p/S: LM ƠN GIÚP TỚ VS :
Tính A biết A=22014-22013-22012-..........- 23-22-21-2-1
A=1/2+1/3+1/4+...+1/2014 phần 2013/1+2012/2+2011/3+...+1/2013