\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{80}-\frac{1}{81}=1-\frac{1}{81}=\frac{80}{81}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\)
\(A=1-\frac{1}{81}\)
\(A=\frac{80}{81}\)
Cái này là toán lớp 6 nha bn
Ủng hộ mk nha ^_-
A=\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{80x81}\)
A=\(1-\frac{1}{81}=\frac{80}{81}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\)
\(A=1-\frac{1}{81}=\frac{80}{81}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{80\cdot81}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{81}+\frac{1}{81}\)
\(=1-\frac{1}{81}\)
\(=\frac{80}{81}\)