a) \(a^4+b^4=\left(a+b\right)^4-4ab\left(a^2+b^2\right)-8a^2b^2\)
b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\left(1\right)\)
thay a+b=10; ab=8 vào (1)
ta có: \(\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.8.10=760\)
sorry bạn mình làm sai. thế này mới đúng nè.
\(a^4+b^4=\left(a+b\right)^4-4ab\left[\left(a+b\right)^2-2ab\right]-16a^2b^2\)
= \(10^4-4.8\left(10^2-2.8\right)-16.8^2=10000-2688-1024=6288\)
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)
= \(10^3-3.8.10=760\)