Đặt C = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{399.400}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{400}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{400}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{400}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}\)(1)
Đặt B = \(\frac{1}{201.400}+\frac{1}{202.399}+...+\frac{1}{300.301}\)
=> 601B = \(\frac{601}{201.400}+\frac{601}{202.399}+...+\frac{601}{301.300}=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
=> B = \(\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\right):601\)
Khi đó : \(A=\frac{C}{B}=\frac{\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}}{\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\right):601}=601\)
Vậy A = 601
thx bạn xyz nha !