Đặt \(A=1+\left(1+2\right)+\left(1+2+3\right)+\cdots+\left(1+2+3+\cdots+98\right)\)
\(=\frac{1\cdot2}{2}+\frac{2\cdot3}{2}+\frac{3\cdot4}{2}+\cdots+\frac{98\cdot99}{2}\)
\(=\frac{1\cdot2+2\cdot3+\cdots+98\cdot99}{2}\)
Ta có: \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+\cdots+\left(1+2+3+\cdots+98\right)}{1\cdot2+2\cdot3+\cdots+98\cdot99}\)
\(=\frac{\frac{1\cdot2+2\cdot3+\cdots+98\cdot99}{2}}{1\cdot2+2\cdot3+\cdots+98\cdot99}=\frac12\)