Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
chu khánh nhi

Tìm x,y nguyên thỏa mãn:

a. 3xy+9x-2y= 10

b.(2x+1). (3y-2)=12

Nguyễn Lê Phước Thịnh
18 tháng 1 2021 lúc 22:41

b) Ta có: \(\left(2x+1\right)\left(3y-2\right)=12\)

\(\Leftrightarrow2x+1\) và 3y-2 là các ước của 12

Trường hợp 1: 

\(\left\{{}\begin{matrix}2x+1=1\\3y-2=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{14}{3}\end{matrix}\right.\)(loại)

Trường hợp 2:

\(\left\{{}\begin{matrix}2x+1=12\\3y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=11\\3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{2}\\y=1\end{matrix}\right.\)(loại)

Trường hợp 3: 

\(\left\{{}\begin{matrix}2x+1=2\\3y-2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\3y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{8}{3}\end{matrix}\right.\)(loại)

Trường hợp 4: 

\(\left\{{}\begin{matrix}2x+1=6\\3y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{4}{3}\end{matrix}\right.\)(loại)

Trường hợp 5: 

\(\left\{{}\begin{matrix}2x+1=3\\3y-2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)(nhận)

Trường hợp 6: 

\(\left\{{}\begin{matrix}2x+1=4\\3y-2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=3\\3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{3}\end{matrix}\right.\)(loại)

Trường hợp 7: 

\(\left\{{}\begin{matrix}2x+1=-1\\3y-2=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\3y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{-10}{3}\end{matrix}\right.\)(loại)

Trường hợp 8: 

\(\left\{{}\begin{matrix}2x+1=-12\\3y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-13\\3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-13}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)(loại)

Trường hợp 9: 

\(\left\{{}\begin{matrix}2x+1=-2\\3y-2=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\3y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)(loại)

Trường hợp 10: 

\(\left\{{}\begin{matrix}2x+1=-6\\3y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-7\\3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\y=0\end{matrix}\right.\)(loại)

Trường hợp 11: 

\(\left\{{}\begin{matrix}2x+1=-3\\3y-2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\3y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-\dfrac{2}{3}\end{matrix}\right.\)(loại)

Trường hợp 12: 

\(\left\{{}\begin{matrix}2x+1=-4\\3y-2=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-5\\3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)(loại)

Vậy: (x,y)=(1;2)

Akai Haruma
18 tháng 1 2021 lúc 23:51

Lời giải phần a:

a) 

$3xy+9x-2y=10$

$\Leftrightarrow 3x(y+3)-2(y+3)=4$

$\Leftrightarrow (3x-2)(y+3)=4$

Đến đây, do $3x-2,y+3$ đều là số nguyên, $3x-2$ chia $3$ dư $1$ nên ta xét các TH sau:

$3x-2=1; y+3=4\Rightarrow x=1; y=-1$

$3x-2=4; y+3=1\Rightarrow x=2; y=-2$

$3x-2=-2; y+3=-2\Rightarrow x=0; y=-5$


Các câu hỏi tương tự
Tạ Châu Khanh
Xem chi tiết
Trần Nam Khánh
Xem chi tiết
Hủ
Xem chi tiết
Lê Tâm Thư
Xem chi tiết
nguyễn linh chi
Xem chi tiết
Nguyễn Triệu Yến Nhi
Xem chi tiết
Nguyễn Ngọc Hiền Anh
Xem chi tiết
Shakia Trinh
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết