\(\left(y+3\right)^2+\left(y-4\right)^2=0\)
Vì \(\left(x+3^2\right)\ge0;\left(y-4\right)^2\ge0\)nên \(\hept{\begin{cases}\left(x+3\right)^{^2}=0\\\left(y-4\right)^2=0\end{cases}}\)=>\(\hept{\begin{cases}x+3=0\\y-4=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\y=4\end{cases}}\)
\(\left(x+3\right)^2+\left(y-4\right)^2=0\)
Vì \(\left(x+3\right)^2\ge0;\left(y-4\right)^2\ge0\)nên \(\hept{\begin{cases}\left(x+3\right)^2=0\\\left(y-4\right)^2-0\end{cases}}\)=>\(\hept{\begin{cases}x+3=0\\y-4=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\y=4\end{cases}}\)