(x+|x|+3)(y+|y|+3)>=9 đẳng thức khi x,y<=0=>vô nghiệm
(x+|x|+3)(y+|y|+3)>=9 đẳng thức khi x,y<=0=>vô nghiệm
Biết \(0< x\le y\)và \(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(x+2y\right)}\right)+\left(\frac{y}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}\right)=\frac{5}{3}\)
Tính \(\frac{x}{y}\)
Tìm x,y,z biết: \(\left(\sqrt{x}-\frac{\sqrt{y}}{2}\right)^2+\left(\frac{\sqrt{3y}}{2}-\frac{1}{\sqrt{3}}\right)^2+\left(\sqrt{z}-1\right)^2=\frac{4}{3}\)
\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right)\)rút gọn biết x=2-\(\sqrt{3}\)và y =\(2+\sqrt{3}\)
Rút gọn
a.\(\left(2\sqrt{x}+\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)\)
b. \(\left(\sqrt{3x}+\sqrt{2x}\right)\left(3\sqrt{x}-\sqrt{6x}\right)\)
c.\(\left(\frac{4}{3}\sqrt{3}+\sqrt{2}\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{3}}\right)-2\)
d.\(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)(x,y lớn hơn hoặc bằng 0)
e.\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}\sqrt{y}+\sqrt{y}\right)\) (x,y lớn hơn hoặc bằng 0)
Chứng minh đẳng thức:
\(x+y+z-3\sqrt[3]{xyz}=\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left(\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right)\)
\(\left\{{}\begin{matrix}x^3+y^3=xy\sqrt{2\left(x^2+y^2\right)}\\4\sqrt{x\sqrt{x^2-1}}=9\left(y-1\right)\sqrt{2\left(x-1\right)}\end{matrix}\right.\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
Ghpt:
a) \(\left\{{}\begin{matrix}\left(4x^2+1\right).x+\left(y-3\right)\sqrt{5-2y}=0\\4x^2+y^2+2\sqrt{3-4x}=7\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+y^2=5\\\sqrt{y-1}\left(x+y-1\right)=\left(y-2\right)\sqrt{x+y}\end{matrix}\right.\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)