`(x+50)/(x+68)=(x-15)/(x-10)`
`=>(x+50)(x-10)=(x+68)(x-15)`
`=> x^2 - 10x + 50x - 500 = x^2 - 15x + 68x - 1020`
`=> x^2 + 40x - 500 = x^2 + 53x - 1020`
`=> 40x - 53x = -1020 + 500`
`=> -13x=-520`
`=> x =-520:(-13)`
`=>x=40`
Vậy: `x=40`
`(x + 50)/(x + 68)=(x-15)/(x-10)`
Điều kiện: `x ne - 68; x ne 10`
Phương trình `=> (x + 50)(x-10) = (x + 68)(x-15)`
`=> x^2 - 10x + 50x - 500 = x^2 - 15x + 68x - 1020`
`=> x^2 +40x - 500 = x^2 +53x - 1020`
`=> 40x - 500 = 53x - 1020`
`=> 53x - 40x = 1020 - 500`
`=> 13x = 520`
`=> x = 520 : 13`
`=> x= 40` (Thỏa mãn)
Vậy `x = 40`