\(\left(x+4\right)^2+\left(x-1\right)\left(x+1\right)=16\)
\(x^2+8x+16+x^2-1=16\)
\(2x^2+8x=16-16\)
\(2x^2+8x=0\)
\(2x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(\left(x+4\right)^2+\left(x-1\right)\left(x+1\right)=16\)
\(x^2+8x+16+x^2-1=16\)
\(2x^2+8x+15=16\)
\(2x\left(x+4\right)=1\)
\(x\left(x+4\right)=\frac{1}{2}\)
đến đây mk chịu rồi
(x + 4)2 + (x - 1)(x + 1) = 16
<=> x2 + 8x + 16 + x2 - 1 = 16
<=> 2x2 + 8x - 1 = 0
<=> (\(\sqrt{2}\)x)2 + 2×\(\sqrt{2}×2\sqrt{2}x\)+ 8) - 9
<=> (\(\sqrt{2}x+2\sqrt{2}\))2 - 9 = 0
<=> (\(\sqrt{2}x+2\sqrt{2}+3\))(\(\sqrt{2}x+2\sqrt{2}-3\)) = 0
Tới đây thì đơn giản rồi