\(\Rightarrow\orbr{\begin{cases}x+1=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\left(-2\right)\end{cases}}\)
Vậy x = -1 hoặc x = 2 hoặc x = -2
\(\left(x+1\right)\left(x^2-4\right)=0\)
\(=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Th1 : \(x+1=0\Rightarrow x=-1\)
Th2 : \(x-2=0\Rightarrow x=2\)
Th3 : \(x+2=0\Rightarrow x=-2\)
\(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=4\end{cases}}}\)
Ta có:\(x^2=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy \(x\in\left\{-2,-1,2\right\}\) thỏa mãn
ta thấy phải có 1 vế = 0 mà vế x + 1 ko thể bằng 0 được => \(x^2-4=0\)
vậy \(x^2=4\)
=> \(x=2\)
\(\left(x+1\right).\left(x^2-4\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
TH1 \(x+1=0\Rightarrow x=-1\)
TH2\(x-2=0\Rightarrow x=2\)
TH3\(x+2=0\Rightarrow x=-2\)
☼ ↕ ✿ ⊰ ⊱ ✪ ✣ ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿ ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿
(x + 1) x 2 − 4 = 0 = x + 1 x − 2 x + 2 = 0
Th1 : x + 1 = 0⇒x = −1
2 : x − 2 = 0⇒
3 x = 2 Th3 : x + 2 =
0⇒x = −2