3P = 1 - \(\frac{2}{\sqrt{x}}\)
Để P nguyên thì trước tiên 3P phải nguyên
Mà để 3P nguyên thì
\(1\sqrt{x}=\left(1;2\right)\)
<=> 3P = (-1;0)
Từ đó => P = 0 khi x = 4
3P = 1 - \(\frac{2}{\sqrt{x}}\)
Để P nguyên thì trước tiên 3P phải nguyên
Mà để 3P nguyên thì
\(1\sqrt{x}=\left(1;2\right)\)
<=> 3P = (-1;0)
Từ đó => P = 0 khi x = 4
1/ Cho biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a)Tìm các giá trị của x để A<-1
b) Tìm các giá trị của \(x\in Z\) sao cho \(2A\in Z\)
2/ Cho \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)tìm các giá trị của x để A>-6
tìm các só thực x sao cho \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}+\sqrt[3]{3-\sqrt{\frac{x}{27}}}\in Z\)
tìm tất cả các số thực x sao cho \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}+\sqrt[3]{3-\sqrt{\frac{x}{27}}}\in Z\)
Cho biểu thức \(P=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\left(\frac{1}{1-\sqrt{x}}-1\right)ĐKXĐ:x>0;x\ne1\)
a, Rút gọn P
b, Tìm x \(\in Z\) để \(P\in Z\)
c, Tìm x biết \(P=\sqrt{x}\)
Cho biểu thức : \(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
a, Rút gọn A
b, Tìm x để A < 1
c, Tìm \(x\in Z\) để \(A\in Z\)
\(P=\frac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\frac{\sqrt{x}+15}{\sqrt{x}-3}-\frac{3\sqrt{x}-1}{5-\sqrt{x}}\)
a. Rút gọn P
b. Tìm x sao cho P<1
c.
tìm \(x\in Z\)để \(P\in Z\)
Giúp mk nha mn! Mk đang cần gấp!
Cho biểu thức: Q = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\).
a) Tìm điều kiện xác định và rút gọn Q.
b) Tìm các giá trị của x để Q < -1.
c) Tìm các giá trị của x \(\in\) Z sao cho 2Q \(\in\) Z.
Cho C = \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}.\)
a) rút gọn C
b) tìm x\(\in\)Z để C \(\in\)Z
c) tìm x để C > \(\frac{1}{2}\)
Cho A= \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)
a) RG
b) tính A khi x= 4 +2\(\sqrt{3}\)
c)tìm x\(\in Z\)để A\(\in Z\)