\(a,\left(x-\frac{1}{2}\right)^2=0\Rightarrow\left(x-\frac{1}{2}\right)^2=0^2\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(b,\left(x-2\right)^2=1=1^2=\left(-1\right)^2\)
+ \(\left(x-2\right)^2=1^2\Rightarrow x-2=1\Rightarrow x=3\)
+ \(\left(x-2\right)^2=\left(-1\right)^2\Rightarrow x-2=-1\Rightarrow x=1\)
\(c,\left(2x-1\right)^3=-8=\left(-2\right)^3\Rightarrow2x-1=-2\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)
\(d,\left(x+\frac{1}{2}\right)^2=\frac{1}{16}=\left(\frac{1}{4}\right)^2=\left(\frac{1}{-4}\right)^2\)
+ \(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\Rightarrow x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{-1}{4}\)
+ \(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{-4}\right)^2\Rightarrow x+\frac{1}{2}=\frac{1}{-4}\Rightarrow x=\frac{-3}{4}\)