=>2x+8z=-4 và x+4z=-2 và y-7z=2
=>Hệ có vô số nghiệm
=>2x+8z=-4 và x+4z=-2 và y-7z=2
=>Hệ có vô số nghiệm
Giải hpt , theo phương pháp Gause
\(\left\{{}\begin{matrix}2x+y-3z=2\\x+y+3z=2\\3x-2y+z=1\end{matrix}\right.\)
Giải hệ: \(\left\{{}\begin{matrix}x>0;y>0;z>0\\x+y+z=3\\x^2y+y^2z+z^2x=4\end{matrix}\right.\)
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)
cho x,y,z nguyen duong thoa man: \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max \(A=x^2+2y^2\)
Cho \(\left\{{}\begin{matrix}x>-1\\y< 2\\z>-\dfrac{1}{2}\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức:
\(F=\left(1+x\right)\left(2-y\right)\left(1+2z\right)\).
Tìm côsin góc giữa hai đường thẳng Δ1 : \(2x+y-1=0\) vaf △2 : \(\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{y+1}=m\\x+y=2m+1\end{matrix}\right.\)
tìm m thuộc Z để hệ có nghiệm
Giải hệ phương trình\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x+\sqrt{\left(x+1\right)y}=2y-1\\\sqrt{2x+3}+\sqrt{y}=x^2-y\end{matrix}\right.\)
1)Giải hệ phương trình với \(x,y,z\in R\)
\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)
2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố
a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)
b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)
3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :
\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)
4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\), \(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:
a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn
b)\(r=r_1+r_2\)