Do \(\left|x-\dfrac{1}{2012}\right|\) \(\ge0\); \(\left|x+y\right|\ge0\)
<=> \(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2012}\right|=0\\\left|x+y\right|=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x-\dfrac{1}{2012}=0\\x+y=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\dfrac{1}{2012}\\y=-x\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{2012}\\y=\dfrac{-1}{2012}\end{matrix}\right.\)
Vậy ...