a/ \(\dfrac{x+1}{2}=\dfrac{2x+3}{5}\)
\(\Leftrightarrow5\left(x+1\right)=2\left(2x+3\right)\)
\(\Leftrightarrow5x+5=4x+6\)
\(\Leftrightarrow5x-4x=6-5\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ...
b/ \(\left|x-1\right|+3\left|y+1\right|+\left|z+2\right|=0\)
Mà với \(\forall x;y;z\) ta có :
\(\left\{{}\begin{matrix}\left|x-1\right|\ge0\\3\left|y+1\right|\ge0\\\left|z+2\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\3\left|y+1\right|=0\\\left|z+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\z+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=-2\end{matrix}\right.\)
Vậy ...
c/ \(\dfrac{x-2}{4}=\dfrac{5-3x}{4}\)
\(\Leftrightarrow x-2=5-3x\)
\(\Rightarrow x+3x=5+2\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
Vậy ......
d/ \(\dfrac{x+2}{4}=\dfrac{4}{x+2}\)
\(\Leftrightarrow\left(x+2\right)\left(x+2\right)=16\)
\(\Leftrightarrow\left(x+2\right)^2=4^2=\left(-4\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy ...
e/ \(\dfrac{x-1}{5}=\dfrac{-20}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=-100\)
\(\Leftrightarrow\left(x-1\right)^2=-100\)
Lại có : \(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\) k tồn tại x