\(A=\frac{4x}{x-2}=\frac{4\left(x-2\right)+8}{x-2}=4+\frac{8}{x-2}\)
Để A có giá trị nguyên thì \(x-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Xét bảng ( bạn tự xét nha )
KL
We have \(A=\frac{4x}{x-2}=\frac{4\left(x-2\right)+8}{x-2}=4+\frac{8}{x-2}\)
\(A\inℤ\Leftrightarrow\frac{8}{x-2}\inℤ\Leftrightarrow8⋮\left(x-2\right)\)
\(\Rightarrow x-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Prints:
\(x-2\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) | \(8\) | \(-8\) |
\(x\) | \(3\) | \(1\) | \(4\) | \(0\) | \(6\) | \(-2\) | \(10\) | \(-6\) |
So \(x\in\left\{3;1;4;0;6;-2;10;-6\right\}\)
Để A có giá trị nguyên thì: \(4x⋮x-2\)
\(\Rightarrow4x-4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-4x+8⋮x-2\)
\(\Rightarrow8⋮x-2\Rightarrow x-2\inƯ\left(8\right)\)
Mà \(Ư\left(8\right)=\left\{-1;-2;-4;-8;8;4;2;1\right\}\)
\(\Rightarrow n-2\in\left\{-1;-2;-4;-8;8;4;2;1\right\}\)
\(\Rightarrow n\in\left\{1;0;-2;-6;10;6;4;3\right\}\)