\(\Leftrightarrow x+3\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(x\in\left\{-2;-4;0;-6;6;-12\right\}\)
\(\dfrac{x-6}{x+3}=\dfrac{x+3-6}{x+3}=\dfrac{x+3}{x+3}-\dfrac{6}{x+3}=1-\dfrac{6}{x+3}\)
\(\dfrac{x-6}{x+3}⋮x+3\Rightarrow\dfrac{6}{x+3}⋮x+3\\ \Rightarrow x+3\inƯ_{\left(6\right)}=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)